skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lobell, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Crop water productivity (CWP) metrics can reveal how the dynamics of crop production and water use change across space and time. We use field-scale satellite inputs from 2016–2021 to estimate potential water savings for four crops (almonds, grapes, walnuts, and citrus—which collectively account for approximately one-third of California’s cropland area), within critically overdrafted groundwater sub-basins of California’s San Joaquin Valley. These annual estimates of field-level water savings potential are based on locally achievable CWP values for each crop type. Our findings show considerable spatial variation in CWP and potential water savings within each sub-basin. We find that increasing CWP to peak efficiency (defined as improving fields to the 95th percentile of observed CWP) for four crops could meet up to 36% of the estimated annual overdraft in San Joaquin Valley. For comparison, fallowing 5% of the four crop type fields in the same study area could potentially reduce annual overdraft by 11%. By delivering results at the field scale, our work can inform targeted interventions by irrigation district managers and more efficient allocation of state incentives for improved water management. For example, we estimate that state grant funding for water efficiency upgrades could have amplified potential water savings threefold by targeting investments to the least efficient fields. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Agriculture will play a central role in meeting greenhouse gas (GHG) emission targets, as the sector currently contributes ∼22% of global emissions. Because emissions are directly tied to resources employed in farm production, such as land, fertilizer, and ruminant animals, the productivity of input use tends to be inversely related to emissions intensity. We review evidence on how productivity gains in agriculture have contributed to historical changes in emissions, how they affect land use emissions both locally and globally, and how investments in research and development (R&D) affect productivity and therefore emissions. The world average agricultural emissions intensity fell by more than half since 1990, with a strong correlation between a region's agricultural productivity growth and reduction in emissions intensity. Additional investment in agricultural R&D offers an opportunity for cost-effective ( 
    more » « less
  3. Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality—reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period—we estimate a potential of 41 to 50 Mt net additional annual CO2uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity. 
    more » « less
  4. Agriculture’s global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture’s environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change–reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products. 
    more » « less
  5. Satellites reveal crop yield losses from nitrogen dioxide around the world. 
    more » « less
  6. In India, the second-largest sugarcane producing country in the world, accurate mapping of sugarcane land is a key to designing targeted agricultural policies. Such a map is not available, however, as it is challenging to reliably identify sugarcane areas using remote sensing due to sugarcane’s phenological characteristics, coupled with a range of cultivation periods for different varieties. To produce a modern sugarcane map for the Bhima Basin in central India, we utilized crowdsourced data and applied supervised machine learning (neural network) and unsupervised classification methods individually and in combination. We highlight four points. First, smartphone crowdsourced data can be used as an alternative ground truth for sugarcane mapping but requires careful correction of potential errors. Second, although the supervised machine learning method performs best for sugarcane mapping, the combined use of both classification methods improves sugarcane mapping precision at the cost of worsening sugarcane recall and missing some actual sugarcane area. Third, machine learning image classification using high-resolution satellite imagery showed significant potential for sugarcane mapping. Fourth, our best estimate of the sugarcane area in the Bhima Basin is twice that shown in government statistics. This study provides useful insights into sugarcane mapping that can improve the approaches taken in other regions. 
    more » « less